An Upper Bound Theorem for Rational Polytopes
نویسندگان
چکیده
منابع مشابه
An Upper Bound Theorem concerning lattice polytopes
R. P. Stanley proved the Upper Bound Conjecture in 1975. We imitate his proof for the Ehrhart rings. We give some upper bounds for the volume of integrally closed lattice polytopes. We derive some inequalities for the delta-vector of integrally closed lattice polytopes. Finally we apply our results for reflexive integrally closed and order polytopes.
متن کاملThe Upper Bound Theorem for Polytopes: an Easy Proof of Its Asymptotic Version
Since at least half of the d edges incident to a vertex u of a simple d-polytope P either all point “up” or all point “down,” v must be the unique “bottom” or “top” vertex of a face of P of dimension at least d/2. Thus the number of P’s vertices is at most twice the number of such high-dimensional faces, which is at most Ed,2 $ iG &Ynu) = O(nld/‘l), if P has n facets. This, in a nutshell, provi...
متن کاملA Geometric Approach for the Upper Bound Theorem for Minkowski Sums of Convex Polytopes
We derive tight expressions for the maximum number of k-faces, 0 ≤ k ≤ d − 1, of the Minkowski sum, P1+⋯+Pr, of r convex d-polytopes P1, . . . , Pr in R, where d ≥ 2 and r < d, as a (recursively defined) function on the number of vertices of the polytopes. Our results coincide with those recently proved by Adiprasito and Sanyal [1]. In contrast to Adiprasito and Sanyal’s approach, which uses to...
متن کاملThe Lower and Upper Bound Problems for Cubical Polytopes
We construct a family of cubical polytypes which shows that the upper bound on the number of facets of a cubical polytope (given a fixed number of vertices) is higher than previously suspected. We also formulate a lower bound conjecture for cubical polytopes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1998
ISSN: 0097-3165
DOI: 10.1006/jcta.1997.2849